Matrix representation of a sixth order Sturm-Liouville problem and related inverse problem with finite spectrum

نویسندگان

  • H‎. ‎ Mirzaei Faculty of Basic Sciences‎, ‎Sahand University of Technology‎, ‎Tabriz‎, ‎Iran
  • K. Ghanbari Faculty of Basic Sciences‎, ‎Sahand University of Technology‎, ‎Tabriz‎, ‎Iran
چکیده مقاله:

‎In this paper‎, ‎we find matrix representation of a class of sixth order Sturm-Liouville problem (SLP) with separated‎, ‎self-adjoint boundary conditions and we show that such SLP have finite spectrum‎. ‎Also for a given matrix eigenvalue problem $HX=lambda VX$‎, ‎where $H$ is a block tridiagonal matrix and $V$ is a block diagonal matrix‎, ‎we find a sixth order boundary value problem of Atkinson type that is equivalent to matrix eigenvalue problem.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

matrix representation of a sixth order sturm-liouville problem and related inverse problem with finite spectrum

‎in this paper‎, ‎we find matrix representation of a class of sixth order sturm-liouville problem (slp) with separated‎, ‎self-adjoint boundary conditions and we show that such slp have finite spectrum‎. ‎also for a given matrix eigenvalue problem $hx=lambda vx$‎, ‎where $h$ is a block tridiagonal matrix and $v$ is a block diagonal matrix‎, ‎we find a sixth order boundary value problem of atkin...

متن کامل

Inverse Sturm-Liouville problem with discontinuity conditions

This paper deals with the boundary value problem involving the differential equation begin{equation*}     ell y:=-y''+qy=lambda y,  end{equation*}  subject to the standard boundary conditions along with the following discontinuity  conditions at a point $ain (0,pi)$  begin{equation*}     y(a+0)=a_1 y(a-0),quad y'(a+0)=a_1^{-1}y'(a-0)+a_2 y(a-0), end{equation*} where $q(x),  a_1 , a_2$ are  rea...

متن کامل

inverse sturm-liouville problem with discontinuity conditions

this paper deals with the boundary value problem involving the differential equationbegin{equation*}    ell y:=-y''+qy=lambda y, end{equation*} subject to the standard boundary conditions along with the following discontinuity  conditions at a point $ain (0,pi)$ begin{equation*}    y(a+0)=a_1 y(a-0),quad y'(a+0)=a_1^{-1}y'(a-0)+a_2 y(a-0),end{equation*}where $q(x),  a_1 , a_2$ are  real, $qin l...

متن کامل

Inverse problem for Sturm-Liouville operators with a transmission and parameter dependent boundary conditions

In this manuscript, we consider the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. We prove by defining a new Hilbert space and using spectral data of a kind, the potential function can be uniquely determined by a set of value of eigenfunctions at an interior point and p...

متن کامل

Inverse Spectral Theory for Sturm-liouville Problems with Finite Spectrum

For any positive integer n and any given n distinct real numbers we construct a Sturm-Liouville problem whose spectrum is precisely the given set of n numbers. Such problems are of Atkinson type in the sense that the weight function or the reciprocal of the leading coefficient is identically zero on at least one subinterval.

متن کامل

A convergent approximation scheme for the inverse Sturm-Liouville problem?

For the Sturm-Liouville operator L =L,: .VP+ -p” +pv one seeks to reconstruct the coefficient p from knowledge of the sequence of eigen-frequencies (Aj with LJ? =Ajn for some y j # 0). An implementable scheme is: for some N determine pnr so (approximately) pN has minimum norm with eigen-frequencies { A , . . . . .IN/ as given. This is the method ot’ ’generalised interpolation‘ and is shown to g...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 41  شماره 4

صفحات  1031- 1043

تاریخ انتشار 2015-08-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023